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Frequency Response of the Back-flow
Cell Model of Mass-Transfer Processes:
Packed-Column Characteristics for Tracer-Gas Absorption

C. V. McSWAIN* and L. D. DURBIN

DEPARTMENT OF CHEMICAL ENGINEERING
TEXAS A&M UNIVERSITY
COLLEGE STATION, TEXAS

Summary

Frequency-response techniques are developed for the backflow cell model
as applied to countercurrent two-phase flow processes with exchange of a
single solute. Experimental outlet-gas response curves have been obtained
for step injection of tracer gas into the air inlet of a six-inch packed
bubble column with different countercurrent flow rates of water. Numeri-
cal Fourier transformation of these curves yields frequency-response
characteristics that are compared with those of the backflow cell model.
On this basis, the backflow cell model adequately simulates the dynamics
of the system.

In a previous article (1), the backflow cell model was introduced
to describe continuous two-phase flow processes with imperfect axial
mixing. Efficient computational methods of determining the solute-
concentration profile in each phase and the efficiency of these processes
at steady state were developed and discussed.

The schematic diagram of the backflow cell model is repeated here
as Fig. 1 for a convenient reference. Each phase is considered to flow
through a train of N perfectly mixed cells or stages with backflow,
fx or §,, from each downstream cell to its neighbor upstream. Between
adjacent cells of the different phases, the mass-transfer operation is

* Present address: Humble Oil and Refining Co., Baytown, Texas.
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FIG. 1. Backflow cell model of two-phase countercurrent transfer operation.

that of a single solute between the rate-controlling or X phase and
the Y phase. The rate of transfer is taken to be dependent upon the
deviation from equilibrium in the X phase due to the concentration of
solute in the Y phase. With respect to the kth cell, this rate is given by

O = Kox@eVi(Czp — CI 1) 1

where the basis is the interfacial area of the X phase in the total
holdup, Vi, of the kth cell. Previously, a variety of situations were
considered for the steady-state calculations, including those with non-
uniform axial holdup and mixing of the phases and linear and non-
linear equilibrium to quadratic order as

cii = ¢ + mey + bey? (2)

Here, methods of calculating the frequency-response characteristics
of the same process based upon the backflow cell model are developed.
The frequency-response technique is important as a means of identi-
fying mixing-parameter models that apply to convective flow processes.
Also, the dynamiecs and frequency-response characteristics of these
processes are important with respect to the automatic control of them.
Advanced control techniques involving feedforward and adaptive
control require more sophisticated models of these processes.

Studies (2,3) of the dynamics of two-phase mass-transfer processes
are ordinarily based upon the assumption of ideal plug flow in both
phases. For linear equilibrium, analytical solutions are obtainable.
However, if imperfect axial mixing is considered, the analysis becomes
much more complicated. To date, no work is available that treats the
frequency response for this case, except analyses (£,4) that are based
upon a series of cells with no backflow terms. Frequency-response
comparisons of the serial cell model with experimental data have been
made by Gray and Prados (2) for a packed absorber and by Doninger
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and Stevens (4) for a packed extractor. Both studies indicate that
more sophisticated models are required to deseribe accurately the in-
teraction of mixing and mass transfer in the systems.

It is the purpose of this work to describe techniques for determining
the frequency-response characteristics of the backflow cell model.
These techniques are closely related to the methods of analysis and
matrix techniques for computation outlined in the previous article
(1). Here, the matrix techniques are based upon complex arithmetic
procedures that are easily handled by most digital computers of the
present day. The applicability of the backflow cell model is evaluated
with respect to experimentally determined frequency-response char-
acteristics of CO. absorption from air to water in a 6-in. diam packed
column packed with V4-in. Intalox saddles and operating as a bubble-
type column.

BACKFLOW CELL MODEL TECHNIQUES

The set of dynamic equations for the backflow cell model are ob-
tained by writing the dynamic solute material balance equations. One
equation results for each cell of the X and Y phase. Each balance is
formulated by equating the rate of accumulation of the solute in the
cell to the net rate of input at any time, The net rate of input is the
difference between the rates of input and output due to the mass trans-
fer of solute between phases and by flow into and out of each cell.
At steady state, the rate of accumulation or net rate of input is zero
for each cell. This gives the set of algebraic equations treated in the
previous paper (I) under the assumption of constant net flow rates,
F, and F,, through the column between inlet and outlet points. As be-
fore, we will consider that the X-phase feed with solute concentration
¢,® is introduced to the mth cell and that the Y-phase feed with:solute
concentration ¢,° is introduced to the nth cell. These feed cells (m and
n) are again assumed to be of negligible volume, which results in zero
accumulation and mass transfer between phases. The density of the
phase in each cell is assumed to be invariant with time. Thus, the rate
of accumulation of solute in a cell is defined as the rate of change of
the solute concentration times the holdup or volume of the particular
phase in the cell.

With the foregoing considerations, typical dynamic solute material
balance equations for the kth cell in the midsection are as follows:

Vx.chx,k = Fxu and Vy.chy.k = Fyx (3)
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where

Fxi = (Fx + fau)lxim1 — (Fx + fxr + fxrs1)Cxk
+ fx.k+lcx,k+l — Gx (4)

Fyi = (Fy + fya)eyper — (Fy + fyu + fra1)Cyn
+ fya-ityia1 + @ (B)

These equations are of the same form in the end sections except
F,=0 for k<m and F;, =0 for k>n

Equations (4) and (5) define the net rate of input functions, F,x and
Fyx, which are zero at steady state as noted above. Again, it is con-
venient to subscript the backflow rates and volumes relative to each
cell to allow for mixing and holdup variations along the axis of the
system.

Previously it was convenient, at steady state, to divide the equations
through by F.c® and define dimensionless concentration ratios based
upon the steady inlet X-phase composition. Now, however, the inlet
feed compositions ¢,’ and ¢,® are considered to vary sinusoidally with
time about steady or constant values, ¢,° and ¢,°, as follows:

cx%(f) = &° + Ac,® sin wi, and () = &° + Acy®sinwt  (6)

These input or forcing-function variations are restricted on a basis
of one at time, although the methods would apply to simultaneous
sinusoidal variations in each feed composition. With respect to the
experimental determination of the frequency-response characteristics,
the choice of foreing function depends upon how easy it is to manipu-
late each feed composition.

Now, the method of frequency-response analysis, which is based
upon small input perturbations, Ac,” sin of and Ac,® sin ot, requires a
set of linear differential equations. It is also convenient to write these
in terms of deviation variables such that the constant or steady part
of each equation vanishes. This part of the solution is assumed to be
known from prior steady-state calculations (7). Thus the response
variables or compositions may be expressed as functions of time by

cx(t) = éx + Acx and cy(t) = éy + Acy )

The deviation compositions, Ac, and Ac,, vary sinusoidally with time.
The method of linearizing the differential equations rests upon the
same basis as the Newton—Raphson method of linearizing the steady-
state equations as discussed in the previous paper (). Each function
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of time in the composition variables is expanded as a Taylor’s series
about the steady-state compositions. Only first-order or linear terms
are retained 1n terms of the deviation variables. Thus, the net rate-of-
input functions are approximated by

- 0 d
Fxi = Fxi + Z (5&: + a_c;—,) Fx.x (8)
=1

and similarly for F,x. But, Fxx = Fyix = 0, since they are evaluated at
constant steady-state conditions. After the partials are evaluated and
the substitution made into Eq. (3), the linearized dynamic equations
result in terms of the deviation composition variables.

In order to facilitate the analysis, it is convenient to define
generalized dimensionless deviation concentrations based upon B =
lacel + |Ac,”| as follows:

— Acx Y = malcy X0 = Acy® yo = Ac,®

B B B B ©)

In this way, we may write the typical kth-cell dynamic equations as

px DXy = (px 3+ Bx) Xic1 — (Px + Bxt + Bxr + ar) X
+ ax(l + 2x) Y + Bxir1 X1

oy DYy = By 1Y — [Dy + By + Bys—1 + Aax(1 + 2x)]Y,
+ A Xi + (py + By 1) Yir

where p, =0, 1, 1 and p, =1, 1, 0 in the regions of the cell model
given by (1 <k <m), (m <k <n),and (n <k < N), respectively.
Also, for k = m = n, set ax = 0 and replace p,Xn,-, by X° and p, ¥V
by Ye.

For a stable system of time-dependent linear differential equations,
the frequency-response character is defined by the steady-state oscil-
latory response for steady sinusoidai forcing. Here, the oscillatory
responses are the variations in the compositions produced after a
steady sinusoidal change in one of the inlet feed compositions has been
imposed at a certain frequency. The usual characteristics that are of
interest for process-control purposes are the amplitude ratio and phase
angle of an outlet response with respect to the sinusoidal input
function. These are included in the particular or steady oscillatory
solution profiles for (1 < k < N) in the form

Xi(t) = | Xi| sin(wt + £Xi) and  Yi(t) = |V sin(wt + £Y,) (11)

(10)
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Here, | X;| and |Y%| are the gain factors and ZX; and ZY are the phase
angles for the kth cell relative to either a unit sinusoidal change in
the inlet X-phase feed composition, X° = sin of, or the Y-phase feed
composition, Y° = sin «f. It is convenient to use, as the test input
function, a unit sinusoidal function with unit amplitude and zero
phase. The gain factors and phase angles are functions of the frequency
w. A plot of the gain and phase characteristics versus frequency is the
well known Bode type of plot. Methods of design of automatic control
systems in the frequency domain are based on this type of plot.

The combination of gain and phase for a cell as a funetion of fre-
quency may be represented as a phasor, Xi{je} or Y;(ju), in complex
form with real and imaginary parts as

Xi(jw) = |Xil e74Xr = Xy r + j X
and (12)
Yi(jw) = |Ya| €4Yr = Yir + jYiu

With these forms, steady-state oscillatory responses in Eq. (11) are
equivalent to

Xu(t) = Im[X:(jw) ¢#] and  Yi(t) = Im[Yi(jw) e#] (13)

where Im means “the imaginary part of.” These responses are sub-
stituted into the set of linearized differential equations, and since
the differentiation, D, and Im operations commute, the term e’/«* ap-
pears in all terms including X° and/or Y° and may be eliminated. This
leaves a set of complex algebraic equations in the same form as Eqgs.
(10), but with the D operator replaced by je and Xi and Y replaced
by phasors, X (jw) and Yi(ju), respectively. This set of equations may
be represented as a quidiagonal matrix system in the same manner
as for the steady-state methods of solution discussed previously (1).
Thus,

AU =R (14)
where the phasor vector is the column matrix,
U= Col{X,, ¥y, Xy, Yo, . . ., ¥n)
and the input or forecing-function vector is the column matrix,
R = Col{rza;7mya;mx2; - - « Ty}

The quidiagonal-coefficient A matrix is specified as before (1) with
diagonals designated from left to right with elements a, b, ¢, d, and e,
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respectively. The major diagonal is along the diagonal of “c” elements.
The elements along a diagonal alternate as, for example,

{exaiyaseanitye; o oo ey

The elements are defined as follows for (1 < k < N):
axi = (px + Bx.) ayk = Byi-1 (15)
bxe=0 byx = Ay
Cxik = —[(px + Bz + Bxarr + ) &y = —[py + Bya + By

+ Jwox.x] + Max(l + 2x) + jwpy sl
der = ar(l + 2x) dyx =0
exi = Bxi+1 ey = (py + By.x)

As before, the exceptions to these occur at the end and feed cells where
a,y = e,y = 0. Also, zero values are assigned to Bxi; By,0; Bxrei]
By.¥; @m; @n; psm; 80d p, . because of the end conditions and the neg-
ligible holdup for the feed cells. .

The solution of Eq. (14) for the phasor vector, U(jo), yields the
frequency-response characteristics depending upon where the sinu-
soidal foreing function is introduced. If a sinusoidal change in Ac,® is
considered, then Ac,® =0 and X° =1, which means that all of the
elements of the B vector are zero except one, which is 7;m = —1.
Similarly, for a sinusoidal change Ac,® in the Y-phase feed composition,
Ac, =0 and Y° =1, and all elements of f are zero except the one
relative to that feed cell, namely, r,, = —1. The form of B in Eq. (9)
ensures division of the gains by the amplitude of the particular input
wave that is acting. The solution of the quidiagonal matrix system of
equations for each assumed frequency o is efficiently carried out by
the Gaussian elimination procedure with the recursive relationships
given by Conte and Dames (5). These were coded in cgmplex arith-
metic. The digital computation gives the phasor vector, U(ju), as a set
of complex numbers at each frequency. Thus the complete profile of
phasors is obtained. This indicates the gain and phase of the sinusoidal
wave as it travels from cell to cell in both phases due to both flow and
the interaction of interphase mass transfer. The amplitude ratiq for
any particular cell k at a given frequency « is defined as the gain
factor |Xx(w)| at the frequency divided by the gain factor |Xx(0)| at
zero frequency. Further details of the derivation and calculation of
theoretical frequency-response characteristics based upon the backflow
cell model are given by McSwain (6).
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The method of digital complex arithmetic calculation avoids the
tedious reduction of such a topological system as the cell model by
conventional methods of block-diagram algebra or signal-flow diagram
methods (7). To perform these algebraic manipulations for a large
number of cells would be very difficult. However, once numerical values
are assigned to the constants and the frequency, recursive manipula-
tions in complex arithmetic could be coded. This program would
amount to the same procedure as the solution method noted above for
the matrix system of equations.

The techniques, as outlined here, allow frequency-response charac-
teristics, which have not been obtained previously, to be obtained for
the cell model with backflow and interphase mass transfer. Although
the techniques apply to the backflow cell model, the frequency-
response characteristics are approximations to those of the continuous
two-phase “eddy diffusion” or dispersion model when the “phi”
number ¢ for each phase is equal to the equivalent Peclet number Np.
of the dispersion model. It was previously shown () that the steady-
state profiles of the backflow cell model converge to those of the dis-
persion model on the order of N-? as the number N of cells increases
at constant “phi” numbers ¢, and ¢, for the phases. No frequency-
response results for the dispersion model are presently available for
comparison. In general, the convergence would hold because of the
spacewise finite difference character of the backflow cell model,
although the rate of convergence may vary somewhat, mainly because
of problems with the rounding off of numbers. Again as before for the
steady state profiles, the continuous frequency-response profiles at a
given frequency for the dispersion model would best be approximated
by the cell model with ¢ = Np, values when smooth curves are drawn
through the average values of adjacent cells assigned to the position
between these cells.

EXPERIMENTAL APPARATUS AND PROCEDURE

The change with time in the concentration of tracer in air at the top
of a packed column was observed after a step change was made in the
tracer content of the inlet air. Absorption of the tracer gas ocecurred
into water flowing downward countercurrently to the air flow. The
column was operated in the bubble mode—that is, with air, the dis-
persed phase, bubbling through the water with its interface at the top
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FIG. 2. Schematic diagram of packed column.

of the packing. A schematic diagram of the packed absorption column
is shown by Fig. 2. The column consisted of seetions A, B, and C
flanged together. Section B is made of 6-in. i.d. aluminum pipe and
sections A and C are nominal 6-in. diam glass Pyrex pipe. The column
was filled to a height of 74.8 in. with 1%4-in. Intalox saddles. The
packing-support plate was made by drilling ¥%-in. holes in a 14-in.-
thick aluminum plate to give about 20% free area.

Water was supplied to the top of the column through a spray-ring
coil of Y4-in, copper tubing with 344-in. diam spray holes. The water
level was adjusted by means of valve V1 on the outlet stream. The
level was maintained as close as possible to a mark between the
packing and the spray ring. The holdup of the water phase was
determined by weighing the water drained from the column after the
solenoid valves were closed. These valves were S1 on the inlet water,
S4 on the inlet air, and S5 on the outlet water stream. The water flow
rate was determined by weighing a timed sample of the effluent during
a run. The air-distributor coil was made in the same manner as the
water-spray ring. The tracer gas indicated was either argon or carbon
dioxide from a standard compressed-gas cylinder. The tracer could be
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admitted to the inlet air stream by means of solonoid valve S3. The
flow rates of the air and tracer gases were determined by rotameters
in the lines.

The concentration of tracer gas in the outlet air streams was
monitored by means of a Gow-Mac Type 9677 thermal-conductivity
cell. The elements of this cell were type G-112 thermistors, one for the
sample gas and one for the reference gas. These were joined in the
usual manner with standard resistors as a Wheatstone bridge con-
nected to a de power supply. The output voltage signal, which varied
with the thermal conduectivity of the sample gas, was amplified and
recorded by a two-channel oscillographic recorder. The thermal-
conductivity cell was immersed in a small oil bath with heater. This
assembly was placed directly inside the top glass section C of the col-
umn above the spray ring. The sample inlet extended perpendicular
into the flow of gas around the oil bath. Lines of 14-in. polyethylene
tubing were brought from the sample and reference sides of the cell to
vacuum. Each liné was connected first to a needle valve and small
rotameter and then to a capacitance tank attached to a vibrating-
diaphragm suction pump. The needle valves and rotameters allowed
the sample and reference gas flows to be adjusted to about the same rate.
Fine adjustments of the balance of the Wheatstone bridge were made
with variable resistors. Prior to the use of the thermal-conductivity
cell in the column, its voltage output signal was found to vary linearly
with tracer-gas concentration at a constant temperature. These tests
were made by sampling the exhaust of a mixing chamber into which
air and tracer gas were metered at constant flow rates.

After allowing the column to come to equilibrium at the desired air
and water flow rates and with the sample and reference flows adjusted,
the solenoid valve 83 was opened to allow sudden and continuous in-
jection (a step-up change) of the tracer gas into the inlet air stream.
During the time of tracer-gas injection, the change in thermal con-
ductivity of the effluent gas stream was recorded. The set of step-up
response tracings recorded for carbon-dioxide injection is shown by
Fig. 3. The response traces were staggered one above the other.to
prepare this figure. The chart lines were photographically filtered out
to leave only the black tracings on the heat-sensitive paper. The step-
up responses for argon were much faster because of negligible absorp-
tion. Further details of the experimental study and preliminary results
are given by McSwain (6).

The space time, ., for the liquid (water) phase was determined as
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FIG. 3. Experimental outlet-gas responses to step input of carbon dioxide
in the inlet gas. Shown, starting from the top of the figure, are Runs
1A, 1B, 54, 5B, 2, 6, 7, and 4B-CO,.

the ratio of measured holdup to measured flow rate for each run. The
space time, rg, for the gas (air) phase was taken to be the ratio of
gas-phase holdup to flow rate. The gas-phase holdup was determined
as the difference between the total void volume and the liquid-phase
holdup. The column space times are indicated for the different runs
in Table 1. The gas (air) flow rates for the runs indicated by Table 1

TABLE 1
Column

Run temp, TL, ra, p,

no. °F sec sec NpRe,L se¢  Npeg Npe,L Nox

Argon tracer runs

2 86 eo 6.4 0 2.8 35.7

3 88 50 7.4 1170 3.4 17.3

4A 88 136 6.5 435 3.3 27.8

4B 88 136 6.5 435 3.2 41.0

5 88 131 6.5 452 3.1 468 .8

6A 88 165 6.6 362 3.0 41.0

6B 88 165 6.6 362 3.3 34.2

7 81 o 7.3 0 3.4 26.4

Carbon dioxide absorption runs

1A 79 222 6.6 267 5.0 35.1 21.9 25.5
1B 79 222 6.6 2687 5.0 35.1 21.9 25.5
2 83 119 8.9 490 4.2 29.7 4.9 14.0
4B 84 50 7.5 1167 3.2 18.5 86.4 6.2
5A 86 151 6.3 399 4.4 32.0 29.3 17.1
5B 86 151 8.3 399 4.4 32.0 29.3 17.1
7 89 64 6.9 946 5.0 21.9 685.5 7.6
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were constant at 12.5 X 10-° lb-moles/sec. Also, the mid-point column
pressure was 158 +=0.1 psia. The column temperature indicated
was measured midway in the packed section by means of a glass
thermometer. :

NUMERICAL FOURIER TRANSFORMATION

The experimental frequency-response characteristics relative to
each step response run were obtained by numerical Fourier trans-
formation of the pulse function, p(t), obtained as

p(t) =1 — o) (16)
Here, v{t) is the normalized step response based on a total pen deflec-
tion of 0 to 1.0 for each recording. Now, p(t) is Fourier transformable,
whereas v(t) i8 not. The Fourier transform, in terms of its real and
imaginary parts at a given frequency », may be calculated as

P(jw) = L “o(t) cos wt dt + j [) “o(t) sin wt dt (17)

where ¢, is the record length. This is taken to be slightly larger than
the time for the step response to reach the final steady state in a
practical sense. Numerical values of P(jo) were obtained for each
step-response curve for a range of assumed values of the frequency.
The integration indicated by Eq. (17) was carried out using Filon’s
(8) method of the Simpson’s rule type of integration. A time increment
of 0.5 sec was used in digitizing the step-response curves.

For each calculated value of P(jw), the transfer-function character-
isties can be obtained as

Gy(jw) = 1 = jw P(jw) (18)

From the real and imaginary parts of this function, the amplitude
ratio or unit gain factor |G,| and the phase angle /G, were calculated
at each assumed frequency. These had to be corrected for the measure-
ment time lag due to the thermal-conduectivity cell. The step response
for the thermal-conductivity cell by itself was measured by suddenly
inserting the sample suction port into an atmosphere of carbon dioxide
and air. The step response of the instrument by itself could be pre-
dicted to a least-mean-square fit by two first order transfer functions
in series with equal time constants of T, = 1.09 sec. These values
were used to correct the calculated gains and phase angles for the
measurement dynamics.

The calculated values of |G,| and ZG,, after correction for the
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FIG. 4. Argon outlet-gas amplitude frequency responses without monitor-

ing and transport lags. Points calculated from experimental argon step-up

responses and solid lines from the backflow cell (8-82-11) model with
best betas.

measurement and sampling time lags, are shown as the points in Figs.
4 and 5 for the argon runs and in Figs. 6, 7, 9, and 10 for the carbon
dioxide runs. The curves on these figures are those calculated for the
backflow cell model. The frequency base is the reduced frequency,
Q = wrg, defined as the actual frequency times the space time 7q of
gas in the column. In order to display all of the data points and fits in
a compact form without crowding, they were staggered along the
abseissa in Figs. 4, 5, 9, and 10. The frequency base for each successive
curve and group of points from left to right may be obtained by
successively shifting the scale on the left so that the lines at @ = 5 or
10 are aligned. The curves on Figs. 4 and 5 for argon are staggered
vertically as well. However, the grid lines given allow one to count
from unit amplitude ratio or zero phase-lag angle.

The caleulated frequency-response characteristics start to become
erratic beginning at about © = 10 for argon and after Q@ =5 for
carbon dioxide. The responses for argon are sharper and thus resolution
to higher frequencies is obtained. The erratic behavior at high fre-
quencies is due to a number of causes, including the lower frequency
content of the step-response data and numerical difficulties associated
with numerical Fourier-transformation techniques. The use of a step
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FIG. 5. Argon outlet-gas phase angle frequency responses without moni-

toring and transport lags. Points calculated from experimental argon

step-up responses and solid lines from the backflow cell (8-82-11) model
with best betas.

type of input function became necessary because of the unavailability
of the necessary equipment required to maintain sinusoidal variations
of the carbon-dioxide content of the feed gas. Any pulse type of input
has greater high frequency content than the step function. However,
unless the pulse duration is sufficiently long, not enough tracer can be
introduced to allow for absorption and obtain a good pulse response
at the top.

It should be stressed that frequency-response data obtained in the
classical manner with a sinusoidal input at each frequency would begin
to become erratic in the high-frequency region also. This is associated
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with difficulties in accurately reading the amplitude ratio and phase
shift at the higher frequencies, where the highly attenuated sinusoidal
response is distorted by noise. The wave signals would have to be
averaged as with a wave analyzer to obtain more reliable results. This
would be similar to analyzing a number of step-response curves and
averaging the results. For example, Argon Runs 6A and 6B and Carbon
Dioxide Runs 5A and 5B, by themselves, give erratic results at the
higher frequencies. If they are averaged, however, much smoother
variations are obtained.

For practical purposes having to do with simulation and process
control the results obtained here are useful in that the predominant
time-lag and delay characteristics are defined considerably past the
critical frequency. Other time lags in any control loop would further
damp the signal character and shift the significance of the column
characteristics to even lower frequencies.

The results given by Gray and Prados (2) indicate that difficulties
with the classical frequency-reponse technique are also experienced at
high frequencies. In their case, the frequency-response character of a
mock-up section including only the end sections of the column was
extracted to obtain the character of the packed section. Their data
for a gas rate of 1 Ib mole/hr-ft? corresponds to a gas-phase residence
time of about rq = 0.5 min. Thus, their highest recorded frequency of
4 cycles/min corresponds to a reduced frequency of about © = 12.5
rad. At this frequency and at zero water flow, the following amplitude
ratios are indicated: 0.03 for the overall column; 0.06 for the mock-up
section; and 0.5 is calculated for the packed section. Thus, the dy-
namics of the measurement and mock-up sections are predominant.
At the higher frequencies, the amplitude ratios are so low already that
good definition of those for the packed section carnot be obtained.
In our case, the frequency-response characteristics of the complete
column are obtained. However, the void space in the end sections is
at a minimum and the results are more characteristic of the packed
section than those by Gray and Prados (2). Their calculated ampli-
tude-ratio curves for the packed section flatten out at the higher fre-
quencies. Our results do not indicate this flattening, and much lower
amplitude ratios are observed.

BACKFLOW CELL MODEL SIMULATION

Brittain and Woodburn (9) obtained steady-state experimental gas-
{air) phase carbon dioxide concentration profiles for a trickle bed.
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They compared these with those predicted by a model considering the
gas with axial mixing and the liquid (water) in plug flow, Here, the
liquid-phase mixing in the bubble column is more severe. Also, the
absorption of carbon dioxide into water is controlled by the liquid-
phase resistance. Thus, the influence of mixing in the liquid phase will
be important. From the standpoint of fitting the backflow cell model
with a given number of cells, we have several parameters that are not
easily specified; namely, the backflow ratios 8, and B, and the number
of transfer units N, Alternatively to 8, and By, the phi numbers ¢,
and ¢, may be specified. For a large number of cells these may be
noted as Npex and Npe,y, respectively, on the basis of the continuous-
dispersion model.

The backflow cell model of the column was considered in three
sections with 11 cells for the region from the top of the packing to the
water level, 82 cells for the packing, and 8 cells for the region from the
bottom of the packing to the air-injection ring. This model is termed
the (11-82-8) BCM (for backflow cell model). The positive z direction
is considered to be the direction of flow of the water phase. Thus, the
X phase is the water phase and the Y phase is the gas phase. Also,
with respect to Fig. 1, the feed cells are at the respective ends of the
column. The assignment of the X phase to the water phase means that
N 18 identical to N,., the number of liquid-phase mass-transfer units.
This is appropriate because of the controlling factor due to the liquid
phase for the carbon-dioxide absorption.

The assignment of three regions to the model is necessary because
of the different phase holdups in the regions per unit length. The void
volumes of the three regions—namely, the top, packing, and bottom
regions—were determined to be 0.104, 0.788, and 0.074 {t?, respectively,
with respective lengths of 6.4, 74.8, and 4.5 in. The void volumes of
all cells in the column were made approximately equal, and this
resulted in the (11-82-8) configuration. Those in the top and bottom
sections were slightly off because of the requirement of an integer
number of cells in each case. The number of cells is sufficiently high so
that with ¢ = Ny, for each phase a very good approximation to the
continuous-dispersion model may be expected. This is indicated by the
comparisons of the moments of the impulse response of the two models
for single-phase flow made by Roemer and Durbin (10). For example,
with 100 cells the percent deviations are about 0.1 in the variances
and 1.0 in the central skew moments for Np. = 40.0. Since the moments
are related to the curvature and form of the amplitude-ratio and
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phase-angle curves, quite good correspondence is to be expected here
for the number of cells chosen.

The assignment of the holdups to the different regions was made
by first assuming that the air-phase holdup or accumulation factor
prx in Egs. (10) was given by pyx = (PiV,x)/(F,RT) where
Vyx and F, are measured at the same conditions and Py is the pressure
at the mid-point of the cell. The pressure variation was taken to be a
linear function of the distance along the column such that the total
pressure drop equaled the friction drop of 2 psig that was noted. The
variation of the liquid- (water) phase holdup is mainly influenced by
the presence of packing since the column was operated as a bubble
column. The liquid-phase holdup V. for a cell in the packing was
taken to be 0.644 times that of one not in the packing section.

The “phi” number ¢; of the ith phase in any section or region B of
the column with length £ is defined relative to the packed section as

_ ONaLe
i = L(p: + 28) (19)

This applies for uniform Peclet number (or 8's) along the axis of the
section. It is assumed that the axial dispersion or eddy diffusion co-
efficient D; for each phase is the same in all three sections. Then, the
ratio of Peclet numbers (or ¢’s) in any two sections is proportional to
the ratios of the product of velocity times length. For the gas phase,
a logical assumption is that its velocity is uniform and thus 8 or Np,
is uniform along the axis. However, the relative velocity of the liquid
phase in the packed section is considered to be inversely proportional
to the void fraction, which is. 0.644 for the 1%-in. Intalox saddles.
Under these assumptions, liquid-phase Peclet numbers or ¢ values of
0.055 and 0.039 times those of the packed section result, respectively,
for the top and bottom sections.

The axial-mixing characteristics of the water phase in this same
column at the same gas-flow rate were investigated (6). Salt solution
was pulse injected at the top of the column and the electrical conduc-
tivity of the water phase was monitored at six points along the packed
section. The responses were analyzed by transient response and
moments techniques (10) to obtain the best fit of the single-phase
backflow cell model in the time domain. The variation of the liquid-
phase eddy diffusivity with water-flow rate was found to be approxi-
mately constant. This confirmed the validity of specifying the liquid-
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phase mixing parameters for the different sections on the basis of the
assumption of uniform eddy diffusivity along the axis.

The single-phase (8-82-11) model was also used to fit the argon step-
response curves by varying the mixing and time delay parameters (6).
The parameters for the best fits in the sense of least-mean-square
deviation between experimental and model step responses are indicated
in Table 1. The overall gas-phase Peclet number Np.q is based upon
the packing section. The results indicate that this is relatively insensi-
tive to the overall liquid-phase Reynolds number Ny, or velocity
except at the high flow rates, where a decrease is noted. The results
are consistent with the assumption of uniform gas-phase eddy diffusiv-
ity, since the changes in liquid-phase velocities in the column are not
too severe. We consider the ratio of the velocity in an end section to
that in the packing to be equal to ¢ = 0.644. Thus, for this variation,
the assumption of uniform gas-phase mixing is good.

COMPARISON OF FREQUENCY-RESPONSE RESULTS

In order to test the validity and usefulness of the numerieal Fourier
transformation techniques, the results for argon as a tracer were com-
pared to the theoretical predictions based upon the backflow cell
model. First, the argon step-response curves were Fourier transformed
and plotted as the points in Figs. 4 and 5, as noted earlier. Then, the
outlet-gas amplitude ratio and phase angle relative to a sinusoidal
variation in the inlet gas-phase concentration to the (8-82-11) back-
flow cell model were computed according to the methods outlined

-above. The results are plotted as the solid lines in Figs. 4 and 5. These

computations were made with the same values of Np, and deadtime
tp as obtained for the best fits in the time domain. The value of N,
was taken to be zero so that no interaction occurred between the
phases, Alternatively, the single-phase model could be used. The com-
plex matrix equation is specified by a tridiagonal system in this case.
As shown by Figs. 4 and 5, the comparisons between the model and
the experimentally derived frequency-response characteristics for the
argon runs are very good for the frequency range less than Q = 10.
At this frequency, the amplitude ratio is about 0.1 and the phase angle
is about —500°. Thus, for practical control and simulation, the results
are realistic and useful. The amplitude-ratio curves for Argon Runs
Nos. 4A and 4B do not agree because of the different values of Npo g
as determined from the time-domain analysis. However, each agrees
with the experimentally derived points. This indicates that the fre-
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quency-response techniques do indicate the degree of difference noted.
Thus these frequency-response techniques would be useful in specify-
ing system parameters. The degree of variation between Argon Runs
Nos. 4A and 4B point out the difficulty of analyzing the faster-rising
argon curves with the measurement lag present. The poorer fit for
Argon Run No. 3 is due to the much higher water rate employed. It
was observed that the water entrained very small air bubbles and
carried them along for a short distance below the air input point. This
would add another more macroscopic type of backflow, possibly over
several cells in the model. Such an analysis was not made, and this run
is included to show the effects of this type of phenomenon. The main
characterization of the small-scale backmixing is satisfied by the value
of Npe g = 17.3 that was obtained.

The estimated values of Npe from the argon runs and Np. . from
the salt-tracer runs were plotted versus the liquid-phase Reynolds
number (6). Smooth curves through the respective sets of data yielded
the estimates of Npeq and Np. i, a8 indicated in Table 1 for the earbon
dioxide runs. The fact that the argon frequency-response character-
istics could be predicted by the model with parameters specified by
the best fit in the time domain led us to believe that the procedure
could be reversed to analyze the carbon dioxide runs. There are no
analytical solutions available for calculating the step response of the
two-phase models. Thus, timewise integration is called for with a re-
sulting increase in computer time for the more complex system and
longer time records. The computatioral effort builds up rapidly with
the number of cases with different parameters required to obtain the
best fit of the response. Frequency-response calculations for the model
need be made only at a selected number of frequencies to define the
amplitude-ratio and phase-angle curves. This greatly reduces the
computational effort.

The frequency-response analysis of the carbon dioxidé runs was
initiated by first computing the characteristics for different values of
Nox with the parameters relative to those for Carbon Dioxide Run No.
2 in Table 1. The slope of the equilibrium line required to specify A
was calculated from Henry’s-law coefficients as given by Perry (11).
The model results as shown by Figs. 6 and 7 indicate that N,, = 14
gives the best fit of the experimental points for this run. Also, the
agreement is quite realistic out to the frequency range @ = 5 to 10.

With respect to the frequency-response plots, it should be noted
that the experimental points have been corrected for the monitoring
lag specified by two first-order time constants of 1.09 sec in series and
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FIG. 6. Outlet-gas amplitude-ratio frequency response. Lines calculated
from (11-82-8) BCM and points from Run 2-CO., excluding monitoring
and transport lags.

a transport lag. The transport delay or dead time ¢, was assumed to
be the cumulative time for transport of the tracer gas from the point
of injection to introduction into the column and then from the outlet
gas above the water level through the sample tube to the thermistor
sensing element of the conductivity cell. No consistently satisfactory
method was available for independently estimating the dead time ¢p.
Thus, this may be regarded as another parameter to be specified from
the data. The dead time does not affect the amplitude-ratio eurves so
that the estimate of N, is best achieved with respect to these curves.
However, the dead time adds to the phase-lag angle a component that
increases linearly with frequency.
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FIG. 7. Outlet-gas phase-angle frequency response. Lines calculated from
(11-82-8) BCM and points from Run 2-COQ., excluding monitoring and
transport lags.
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For Carbon Dioxide Run No. 2 with N,, = 14, the estimation of the
dead time ¢p was made by averaging the additional delay times re-
quired to make the theoretical phase-lag curve match the experimental
phase-lag curve at frequencies of @ = 1, 2, and 3. The phase-lag angle
due to this dead time of 4.2 sec was subtracted from each experimental
point. These corrected points are the ones plotted in Fig. 5. The fre-
quency range that was selected occurs in the rapidly changing part
of the phase-lag curve. As indicated by Fig. 5, for the higher frequen-
cies above Q@ = 2, the theoretical phase-lag curves are fairly inde-
pendent of N, Even with the dead time known beforehand, it would
be more difficult to estimate the best value of N, using phase-lag
curves such as displayed by Fig. 7. However, Fig. 7 indicates that a
value of Nox = 14 is consistent with model variations and the data.

The indication is that the phase lag of the model increases with
frequency slightly more rapidly than the experimental data. It is
believed that this is due to the loss of resolution with the numerical
Fourier transformation techniques. In general for process control with
negative feedback, good definition of frequency-response character-
istics is required out to the critical frequency for which the phase lag
is 180°. Thus, in this respect the model simulation of the absorption
column with N, =14 for Carbon Dioxide Run No. 2 is quite
satisfactory.

The amplitude and phase-lag angle characteristics of the concentra-
tion X,,, of carbon dioxide in the outlet liquid (water) phase of the
{11-82-8) backflow cell model relative to sinusoidal variations in the
inlet-gas-phase concentration were computed for the conditions of
Run No. 2 with N, = 14. These characteristics are shown plotted
versus frequency in Fig. 8. The reduced frequency basis Q = wrg, a8
based upon the gas-phase space time, is retained so that more direct
comparisons with the gas-phase characteristic curves may be made.
Interestingly enough, the amplitude-ratio curve decreases only slightly
faster than that for the gas out. However, the phase-lag curve shows a
much slower increase with frequency than the gas-out curve. This is
due to the coupling by mixing and mass transfer between the gas and
liquid cells right after the gas inlet point. The net effect is to decrease
the phase-lag angle.

The comparison of the data for the other carbon dioxide absorption
runs was made under the assumption that the mass-transfer-rate fac-
tor (k..a) is constant for the bubble-column operation. Alternatively,
this means that the product (F,N,) is a constant. In this way,
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FIG. 8. Outlet-liquid frequency response characteristics. Calculated from
(11-82-8) BCM with No.: = 140.

N for each run was estimated on the basis of the best value of Ny, =
14 for Carbon Dioxide Run No. 2. These values of N, are given in
Table 1. Other parameters relative to the conditions of each run as
given in this table were obtained in the same manner as indicated
above for Run No. 2. For each run, the amplitude-ratio and phase-
angle characteristics of the outlet gas of the (11-82-8) backflow cell
model were computed. These are compared with those derived from the
experimental data in Figures 9 and 10. Again, the experimental phase-
lag points are those corrected for dead time in the same manner as
noted for Run No. 2. The estimated dead time for each run is given in
Table 1.

The frequency-response comparisons in Figs. 9 and 10 indicate that
the assumption of constant (k..a) with respect to water flow rate is a
fairly good approximation. Some increase in N,. for Carbon Dioxide
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FIG. 9. Outlet-gas amplitude-ratio frequency responses for various carbon
dioxide runs. Lines calculated from (11-82-8) BCM and points from ex-
perimental data, excluding monitoring and transport lags.
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FIG. 10. Outlet-gas phase-angle frequency responses without monitoring

and transport lags for the absorption of carbon dioxide by water. Solid

lines are calculated from the (11-82-8) BCM and points from experi-
mental data.

Runs Nos. 5 and 7 is indicated by the amplitude-ratio data. Before
any correlation of N,, is undertaken, further test data from pulse and
sinusoidal responses should be analyzed. However, these results indi-
cate that the backflow ceil model can be used to simulate the system
for different conditions with an adjustment of parameters.

CONCLUSION

The backflow-cell-model equations have been developed for the two-
phase flow process with imperfect axial mixing and mass transfer of a
single solute. Methods of solution for the frequency-response charac-
teristics of this model have been developed and the techniques outlined
for digital computation.

The frequency-response characteristics of the model have been com-
pared to those obtained for the system of air and water in counter-
current flow in a packed bubble column with step injection of argon
and carbon dioxide tracer gases. The model frequency-response char-
acteristics, as determined with parameters specified by the best fit of
the argon step responses, agreed closely with the experimentally de-
rived frequency-response data. This served to indicate that the param-
eters necessary to specify the system with carbon-dioxide absorption
could be estimated by these frequency-response techniques. By varia-
tion of the number of transfer units N.,, the model and experimental
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amplitude-ratic curves can be brought into very good agreement for
the range of frequencies of practical interest. The phase-lag-angle
curves are not as reliable because of the influence of injection and
sampling dead time. For variations in the liquid flow rate, the results
of the study for this bubble column indicate that the backflow cell
mode! is a useful dynamic model. Some adjustment in N,, would be
required as a function of liquid flow rate. The methods of calculating
frequency-response characteristics from the step response appear to be
useful for practical process-control analysis. This is doubly so, since
the step response is more readily obtained than any other type of
charaeteristic response without recourse to specialized and expensive
equipment.

List of Symbols

a,becder, in form a;.; elements of quidiagonal coefficient A
matrix
a interfacial area per unit volume of system, ft?/ft?
a interfacial area per unit volume in the kth cell
A cross-sectional area of column
A quidiagonal coefficient matrix from combined X and
Y equations
b curvature of equilibrium line
Cs concentration of solute in the ¢th phase, b moles/ft?
¢? inlet concentration of solute in the ith phase
D derivative operator, d/dt
D; eddy diffusion coefficient for the ith phase, ft*/sec
fi backflow rate of the ith phase from the kth cell, ft*/sec
F, flow rate of ith phase, ft?/sec
kox overall mass-transfer coefficient based on X phase,
ft/sec
{ actual length of any section of column, ft
L, actual length of packed section of column, ft
m slope of equilibrium relationship; cell with X-phase
feed
cell with Y-phase feed
total number of cells in system including those in the
end sections
Ngr number of cells in a region R
NzeL liquid-phase Reynolds number (average superficial ve-
locity X nominal packing size)/kinematic viscosity

Z =3



14: 42 25 January 2011

Downl oaded At:

FREQUENCY RESPONSE OF BACK-FLOW CELL MODEL 49

Nox
NPe.d

Ds

’

q
gk

z
Greek Letters

(247

Bik
Ay

P,k

b

number of transfer units, koxaL,/Fyx

dimensionless Peclet number for the ith phase in any
section u,¢/D;

coefficient element for net flow of the ith phase in a
region, 1 if or 0 if not

intercept of equilibrium expression

mags transfer between X and Y phases in kth cell,
Eq. (1)

element of & for ¢th phase and kth cell material balance
constant column vector from combined X and Y
equations

actual time, sec

transport or dead time, sec

linear velocity, ft/sec

alternating X and Y profile column phasor vector
total volume of system

volume of X and Y phases in kth cell

volume of ith phase in kth cell

generalized solute concentration deviation in X phase
generalized solute concentration variation in X-phase
feed

generalized solute concentration deviation in Y phase
generalized solute concentration variation in Y-phase
feed

axial length dimension from X-phase input, ft

dimensionless rate constant for mass transfer in kth
cell, NoxVi/V

backflow ratio from kth cell in tth phase, f;./F:
deviation in arbitrary variable y from constant steady
state

void fraction

dimensionless capacity ratio, mFy/F,

holdup rate constant for ith phase, V,;/F;

space time

“phi” number for the ith phase, Eq. (19)
dimensionless curvature of equilibrium relation
(be<®) /m?

actual frequency, rad/sec

reduced frequency wrg, dimensionless
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Subscripts

gas phase

phase, X or Y
imaginary part of
arbitrary cell
liquid phase
X-phase feed cell
Y-phase feed cell
real part of

X or Y phase

%N:ﬁr‘st.O

ko

Superscripts

constant steady-state value
0 feed condition
¢ equilibrium

Acknowledgments

Digital computations were performed by the Data Processing Cen-
ter of the Texas Engineering Experiment Station. This support is
greatly appreciated. The first author acknowledges fellowship assist-
ance by the Dow Chemical Company.

REFERENCES

. McSwain and L. D. Durbin, Separation Sci., 1, 677 (19686).
. Gray and J. W. Prados, AJ.Ch.E.J,, 9, 211 (1963).
. Biery and D. R. Boylan, Ind. Eng. Chem. Fundamentals, 2, 44 (1963).
. Doninger and W. F. Stevens, AI.Ch.E. J., 14, 591 (1968).
. Conte and R. T. Dames, Math. Aids Comp., 12, 198 (1958).
V McSwain, Ph.D. dissertation, Texas A&M University, College Station,
'exas, 1068.
. C. Kuo, Automatic Control Systems, Prentice-Hall, Englewood Cliffs,
.J ., 1962,
. N. G. Filon, Proc. Roy. Soc. (Edinburgh), 48, 38 (1928).
M I. Brittan and E. T. Woodburn, A.I.Ch.E. J,, 12, 541 (1966).
M. H. Roemer and L. D, Durbin, Ind. Eng. Chem. Fundamentals, 6, 120
(1967).
11. J. H, Perry (ed.), Chemical Engineers Handbook, 3rd ed., McGraw-Hill, New
York, 1950, p. 674.

R
'—]Om“'—";UO
UHO-G<

\Q
rzw

S ©o®

Recetved by editor September 10, 1968
Submitted for publication December 20, 1968



