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Frequency Response of the Back-flow 
Cell Model of Mass-Transfer Processes: 
Pac ked-Column Characteristics for Tracer-Gas Absorpt ion 

C. V. McSWAIN" and L. D. DURBIN 
DEPARTMENT OF CHEMICAL ENGINEERING 

TEXAS A & M  UNIVEBSITY 
COLLEGE STATION, TEXAS 

Summary 

Frequency-response techniques are developed for the backflow cell model 
as applied to countercurrent two-phase flow processes with exchange of a 
single solute. Experimental outlet-gas response curves have been obtained 
for step injection of tracer gas into the air inlet of a six-inch packed 
bubble column with different countercurrent flow rates of water. Numeri- 
cal Fourier transformation of these curves yields frequency-response 
characteristics that are compared with those of the backflow cell model. 
On this basis, the backflow cell model adequately simulates the dynamics 
of the system. 

In a previous article ( I ) ,  the backflow cell model was introduced 
to describe continuous two-phase flow processes with imperfect axial 
mixing. Efficient computational methods of determining the solute- 
concentration profile in each phase and the efficiency of these processes 
a t  steady state were developed and discussed. 

The schematic diagram of the backflow cell model is repeated here 
as Fig. 1 for a convenient reference. Each phase is considered to flow 
through a train of N perfectly mixed cells or stages with backflow, 
j x  or fY, from each downstream cell to its neighbor upstream. Between 
adjacent cells of the different phases, the mass-transfer operation is 

* Present addreas: Humble Oil and Refining Co., Baytown, Texas. 
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26 C. V. McSWAlN AND 1. D. DURBIN 

FIG. 1. Backflow cell model of two-phase countercurrent transfer operation. 

that of a single solute between the rate-controlling or X phase and 
the Y phase. The rate of transfer is taken to be dependent upon the 
deviation from equilibrium in the X phase due to the concentration of 
solute in the Y phase. With respect to the kth cell, this rate is given by 

(1) 
where the basis is the interfacial area of the X phase in the total 
holdup, V k ,  of the kth cell. Previously, a variety of situations were 
considered for the steady-state calculations, including those with non- 
uniform axial holdup and mixing of the phases and linear and non- 
linear equilibrium to quadratic order as 

(2) 
Here, methods of calculating the frequency-response characteristics 

of the same process based upon the backflow cell model are developed. 
The frequency-response technique is important as a means of identi- 
fying mixing-parameter models that apply to convective flow processes. 
Also, the dynamics and frequency-response characteristics of these 
processes are important with respect to the automatic control of them. 
Advanced control techniques involving feedforward and adaptive 
control require more sophisticated models of these processes. 

Studies (8,s) of the dynamics of two-phase mass-transfer processes 
are ordinarily based upon the assumption of ideal plug flow in both 
phases. For linear equilibrium, analytical solutions are obtainable. 
However, if imperfect axial mixing is considered, the analysis becomes 
much more complicated. To date, no work is available that treats the 
frequency response for this case, except analyses (8,4) that are based 
upon a series of cells with no backflow terms. Frequency-response 
comparisons of the serial cell model with experimental data have been 
made by Gray and Prados (8) for a packed absorber and by Doninger 

q k  = k o x a k v k ( c x , k  - c: ,k)  

c:,k = q' + m y  + bcy2 
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FREQUENCY RESPONSE OF BACK-FLOW CELL MODEL 27 

and Stevens ( 4 )  for a packed extractor. Both studies indicate tha t  
more sophisticated models are required to describe accurately the in- 
teraction of mixing and mass transfer in the systems. 

I t  is the purpose of this work to describe techniques for determining 
the frequency-response characteristics of the backflow cell model. 
These techniques are closely related to the methods of analysis and 
matrix techniques for computation outlined in the previous article 
(1). Here, the matrix techniques are based upon complex arithmetic 
procedures that are easily handled by most digital computers of the 
present day. The applicability of the backflow cell model is evaluated 
with respect to experimentally determined frequency-response char- 
acteristics of CO, absorption from air to water in a 6-in. diam packed 
column packed with %-in. Intalox saddles and operating as a bubble- 
type column. 

BACKFLOW CELL MODEL TECHNIQUES 

The set of dynamic equations for the backflow cell model are ob- 
tained by writing the dynamic solute material balance equations. One 
equation results for each cell of the X and Y phase. Each balance is 
formulated by equating the rate of accumulation of the solute in the 
cell to the net rate of input a t  any time. The net rate of input is the 
difference between the rates of input and output due to the mass trans- 
fer of solute between phases and by flow into and out of each cell. 
A t  steady state, the rate of accumulation or net rate of input is zero 
for each cell. This gives the set of algebraic equations treated in the 
previous paper (1) under the assumption of constant net flow rates, 
F ,  and F,, through the column between inlet and outlet points. As be- 
fore, we will consider that the X-phase feed with solute concentration 
cXo is introduced to the mth cell and that the Y-phase feed with solute 
concentration cYo is introduced to the nth cell. These feed cells ( m  and 
n )  are again assumed to be of negligible volume, which results in zero 
accumulation and mass transfer between phases. The density of the 
phase in each cell is assumed to be invariant with time. Thus, the rate 
of accumulation of solute in a cell is defined as the rate of change of 
the solute concentration times the holdup or volume of the particular 
phase in the cell. 

With the foregoing considerations. typical dynamic solute material 
balance equations for the kth cell in the midsection are as follows: 

v x . & c x , k  = Fx,k  and v y & & . k  = F y , k  (3) 
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28 C. V. McSWAlN AND 1. D. DURBIN 

where 

Fx.t = (Fx fx.k)Cx.k-l - (Fx fx,k fx.k+t)Cx,k 

f fx ,k+lCx,k+l  - q k  (4) 

F y . k  = (FY + f u . k ) c y . k + l  - (FY + fy .k + .fy,k-l)Cy,k 
f fy .k-lcy,k-l  + q k  (5) 

These equations are of the same form in the end sections except 

F ,  = 0 for k < m and F, = 0 for k > n 
Equations (4) and (5) define the net rate of input functions, F x , k  and 
FY,kl  which are zero a t  steady state as noted above. Again, it is con- 
venient to subscript the backflow rates and volumes relative to each 
cell to allow for mixing and holdup variations along the axis of the 
s y s tem . 

Previously it was convenient, a t  steady state, to divide the equations 
through by Frcxo and define dimensionless concentration ratios based 
upon the steady inlet X-phase composition. Now, however, the inlet 
feed compositions cxo and cYo are considered to vary sinusoidally with 
time about steady or constant values, exo and E ~ O ,  as follows: 

and c,O(t) = Cyo + byo sin wt (6) 

These input or forcing-function variations are restricted on a basis 
of one a t  time, although the methods would apply to simultaneous 
sinusoidal variations in each feed composition. With respect to the 
experimental determination of the frequency-response characteristics, 
the choice of forcing function depends upon how easy it is to manipu- 
late each feed composition. 

Now, the method of frequency-response analysis, which is based 
upon small input perturbations, Ac," sin w t  and Ac,O sin w t ,  requires a 
set of linear differential equations. It is also convenient to write these 
in terms of deviation variables such that the constant or steady part 
of each equation vanishes. This part of the solution is assumed to be 
known from prior steady-state calculations (1 ) . Thus the response 
variables or compositions may be expressed as functions of time by 

cxo((t) = Exo + Acxo sin wt, 

cx(t) = Ex + Acx and cy(t) = Ey + Acy (7) 
The deviation compositions, Acx and Acyl vary sinusoidally with time. 
The method of linearizing the differential equations rests upon the 
same basis as the Newton-Raphson method of linearizing the steady- 
state equations as discussed in the previous paper (1). Each function 
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FREQUENCY RESPONSE OF BACK-FLOW CELL MODEL 29 

of time in the composition variables is expanded as a Taylor's series 
about the steady-state compositions. Only first-order or linear terms 
are retained in terms of the deviation variables. Thus, the net rate-of- 
input functions are approximated by 

n 

- 
and similarly for F y , k .  But, T x , k  = F y , k  = 0,  since they are evaluated a t  
constant steady-state conditions. After the partials are evaluated and 
the substitution made into Eq. (3 ) ,  the linearized dynamic equations 
result in terms of the deviation composition variables. 

In order to facilitate the analysis, it is convenient to define 
generalized dimensionless deviation concentrations based upon B = 
IAc,"I + [Acyni as follows: 

In this way, we may write the typical kth-cell dynamic equations as 

P x , k D X k  = (px + 8 x , k ) X k - - l  - (px + 8 x . k  + @x.k+l  + a k ) X k  

(10) 
+ at( 1 + 2x1 y k  + /%.k+lXk+l 

P y , k D Y k  = @ y , k - I Y k - l  - [ p y  + 6 y . k  + 8 y . k - 1  + k ( l  + 2 X ) l Y k  + A a k X k  + ( p y  + & . k ) Y k + l  

where p ,  = 0, 1,  1 and p ,  = 1, 1, 0 in the regions of the cell model 
given by (1 5 k < ?n) , ( t n  _< k _< n) , and (n < k _< A'), respectively. 
Also, for k = 7n = n, set ak = 0 and replace p,X,-, by X" and p,Y,+, 

For a stable system of time-dependent linear differential equations, 
the frequency-response character is defined by the steady-state oscil- 
latory response for steady sinusoidal forcing. Here, the oscillatory 
responses are thc variations in the compositions produced after a 
stcady sinusoidal change in one of the inlet feed compositions has been 
imposed a t  a certain frequency. The usual characteristics that are of 
interest for process-control purposes are the amplitude ratio and phase 
angle of an outlet response with respect to the sinusoidal input 
function. These are included in the particular or steady oscillatory 
solution profiles for (1 5 k 5 N )  in the form 

x k ( t )  = l X k l  sin(wt + L X k )  and Y,(t) = ( Y k I  sin(wt + L Y k )  (11) 

by YO. 
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30 C. V. McSWAlN AND 1. D. DURBIN 

Here, l X k l  and I Ykl are the gain factors and LXk and LYk are the phase 
angles for the kth cell relative to either a unit sinusoidal change in 
the inlet X-phase feed composition, Xo = sin ot, or the Y-phase feed 
composition, Yo = sin ot. It is convenient to use, as the test input 
function, a unit sinusoidal function with unit amplitude and zero 
phase. The gain factors and phase angles are functions of the frequency 
W. A plot of the gain and phase characteristics versus frequency is the 
well known Bode type of plot. Methods of design of automatic control 
system in the frequency domain are based on this type of plot, 

The combination of gain and phase for a cell as a function of fre- 
quency may be represented as a phasor, Xkfjo) or Yk( j~ ) ,  in complex 
form with real and imaginary parts as 

Xk(jw) = l x k !  ejLXb = X k , R  + j x k , I  
and (12) 

Yk(j0) = l y k l  eiLYk = Yk,R + j Y k , I  

With these forms, steady-state oscillatory responses in Eq. (11) are 
equivalent to 

xk(t) = Im[Xk(jw) e*I] and Yk(t) = Im[Yk(jw) e*‘] (13) 

where Im means “the imaginary part of.” These responses are sub- 
stituted into the set of linearized differential equations, and since 
the differentiation, D, and Im operations commute, the term e’wt ap- 
pears in all terms including X o  and/or Yo and may be eliminated. This 
leaves a set of complex algebraic equations in the same form as Eqs. 
( lo) ,  but with the D operator replaced by j w  and Xk and Yk replaced 
by phasors, Xk(jw) and Y k ( j ~ ) ,  respectively. This set of equations may 
be represented as a quidiagonal matrix system in the same manner 
as for the steady-state methods of solution discussed previously ( 1 ) .  
Thus, 

= g! (14) 
where the phasor vector is the column matrix, 

fi = Col(X1, Y1,X2, Y*, . . . , Y N )  

and the input or forcing-function vector is the column matrix, - 
R = Colf r , ,~  ; r , , ~  ; rx,2 ; . . . ; ~ , . N I  

The quidiagonal-coefficient A’ matrix is specified as before ( I )  with 
diagonals designated from left to right with elements a,  b, c, d ,  and e,  
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FREQUENCY RESPONSE OF BACK-FLOW CELL MODEL 31 

respectively. The major diagonal is along the diagonal of “d’ elements. 
The elements along a diagonal alternate as, for example, 

(CX.1  ; C y , l  ; c x . 2  ; c y , 2  ; - . . ; C Y . N )  

a x . k  - - ( p x  + & , k )  a y , k  = By.k-1 (15) 

The elements are defined as follows for ( 1  5 k _< N )  : 

b x , k  = 0 

c x . k  = - [ ( p x  + &.k + Bx..k+l + at> 

b y . &  = X a k  

c y , k  = - b y  + &.k + b y A - 1  + j W P X , k l  + X a k ( 1  + 2x1 + j w p y . k ]  

d x , k  = ad1 + 2x1 
e x , k  = & , k + l  

d y , k  = 0 

e r , k  = (PY + &.6) 

As before, the exceptions to these occur a t  the end and feed cells where 

/ 3 y , N ;  a,,,; a,,; px,m; and pY.,, because of the end conditions and the neg- 
ligible holdup for the feed cells. 

The solution of Eq. (14) for the phasor vector, C ( ~ O ) ,  yields the 
frequency-response characteristics depending upon where the sinu- 
soidal forcing function is introduced. If a sinusoidal change in Ac,O is 
considered, then Ac,O = 0 and X o  = 1, which means that  all of the 
elements of the R vector are zero except one, which is rz,m = -1. 
Similarly, for a sinusoidal change Acyo in the Y-phase feed composition, 
AcIo = 0 and Y o  = 1, and all elements of R are zero except the one 
relative to that feed cell, namely, ry,,, = -1. The form of B in Eq. (9) 
ensures division of the gains by the amplitude of the particular input 
wave that is acting. The solution of the quidiagonal matrix system of 
equations for each assumed frequency o is efficiently carried out by 
the Gaussian elimination procedure with the recursive relationships 
given by Conte and Dames (6). These were coded in complex arith- 
metic. The digital computation gives the phasor vector, o ( j O > ,  as a set 
of complex numbers a t  each frequency. Thus the complete profile of 
phasors is obtained. This indicates the gain and phase of the sinusoidal 
wave as it travels from cell to cell in both phases due to both flow and 
the interaction of interphase mass transfer. The amplitude ratiq for 
any particular cell k a t  a given frequency o is defined as the gain 
factor l x & ( W )  I at the frequency divided by the gain factor IXk(0) I at 
zero frequency. Further details of the derivation and calculation of 
theoretical frequency-response characteristics based upon the backflow 
cell model are given by McSwain (6). 

= e y , N  = 0. Also, zero values are assigned to Py,o; 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
4
:
4
2
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



32 C. V. McSWAlN AND 1. D. DURBIN 

The method of digital complex arithmetic calculation avoids the 
tedious reduction of such a topological system as the cell model by 
conventional methods of block-diagram algebra or signal-flow diagram 
methods (7’). To perform these algebraic manipulations for a large 
number of cells would be very difficult. However, once numerical values 
are assigned to the constants and the frequency, recursive manipula- 
tions in complex arithmetic could be coded. This program would 
amount to the same procedure as  the solution method noted above for 
the matrix system of equations. 

The techniques, as outlined here, allow frequency-response charac- 
teristics, which have not been obtained previously, to be obtained for 
the cell model with backflow and interphase mass transfer. Although 
the techniques apply to the backflow cell model, the frequency- 
response characteristics are approximations to those of the continuous 
two-phase “eddy diffusion” or dispersion model when the “phi” 
number $I for each phase is equal to the equivalent Peclet number Npe 
of the dispersion model. It was previously shown ( 1 )  that  the steady- 
state profiles of the backflow cell model converge to those of the dis- 
persion model on the order of N-* as the number N of cells increases 
at constant “phi” numbers qiX and (pu for the phases. No frequency- 
response results for the dispersion model are presently available for 
comparison. In general, the convergence would hold because of the 
spacewise finite difference .character of the backflow cell model, 
although the rate of convergence may vary somewhat, mainly because 
of problems with the rounding off of numbers. Again as before for the 
steady state profiles, the continuous frequency-response profiles a t  a 
given frequency for the dispersion model would best be approximated 
by the cell model with 4 = Np. values when smooth curves are drawn 
through the average values of adjacent cells assigned to  the position 
between these cells. 

EXPERIMENTAL APPARATUS AND PROCEDURE 

The change with time in the concentration of tracer in air a t  the top 
of a packed column was observed after a step change was made in the 
tracer content of the inlet air. Absorption of the tracer gas occurred 
into water flowing downward countercurrently to the air flow. The 
column was operated in the bubble mode-that is, with air, the dis- 
persed phase, bubbling through the water with its interface a t  the top 
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FREQUENCY RESPONSE OF BACK-FLOW CELL MODEL 33 

MPLE SUCTION 

FIG. 2. Schematic diagram of packed column. 

of the packing. A schematic diagram of the packed absorption column 
is shown by Fig. 2. The column consisted of sections A, B, and C 
flanged together. Section B is made of 6-in. i.d. aluminum pipe and 
sections A and C are nominal 6-in. diam glass Pyrex pipe. The column 
was filled to a height of 74.8 in. with '/2-in. Intalox saddles. The 
packing-support plate was made by drilling %-in. holes in a %-in.- 
thick aluminum plate to give about 20% free area. 

Water was supplied to the top of the column through a spray-ring 
coil of 1/2-in. copper tubing with 3/s4-in. diam spray holes. The water 
level was adjusted by means of valve V1 on the outlet stream. The 
level was maintained as close as possible to a mark between the 
packing and the spray ring. The holdup of the water phase was 
determined by weighing the water drained from the column after the 
solenoid valves were closed. These valves were S1 on the inlet water, 
54 on the inlet air, and S5 on the outlet water stream. The water flow 
rate was determined by weighing a timed sample of the effluent during 
a run. The air-distributor coil was made in the same manner as the 
water-spray ring. The tracer gas indicated was either argon or carbon 
dioxide from a standard compressed-gas cylinder. The tracer could be 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
4
:
4
2
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



34 C. V. McSWAlN AND 1. D. DURBIN 

admitted to the inlet air stream by means of solonoid valve 53. The 
flow rates of the air and tracer gases were determined by rotameters 
in the lines. 

The concentration of tracer gas in the outlet air streams was 
monitored by means of a Gow-Mac Type 9677 thermal-conductivity 
cell. The elements of this cell were t,ype G-112 thermistors, one for the 
sample gas and one for the reference gas. These were joined in the 
usual manner with standard resistors as a Wheatstone bridge con- 
nected to  a dc power supply. The output voltage signal, which varied 
with the thermal conductivity of the sample gas, was amplified and 
recorded by a two-channel oscillographic recorder. The thermal- 
conductivity cell was immersed in a small oil bath with heater. This 
assembly was placed directly inside the top glass section C of the col- 
umn above the spray ring, The sample inlet extended perpendicular 
into the flow of gas around the oil bath. Lines of %-in. polyethylene 
tubing were brought from the sample and reference sides of the cell to 
vacuum. Each lind was connected first to a needle valve and small 
rotameter and then to a capacitance tank attached to a vibrating- 
diaphragm suction pump. The needle valves and rotameters allowed 
the sample and reference gas flows to be adjusted to about the same rate. 
Fine adjustments of the balance of the Wheatatone bridge were made 
with variable resistors. Prior to the use of the thermal-conductivity 
cell in the column, its voltage output signal was found to vary linearly 
with tracer-gas concentration a t  a constant temperature. These testa 
were made by sampling the exhaust of a mixing chamber into which 
air and tracer gas were metered at constant flow rates. 

After allowing the column to come to equilibrium a t  the desired air 
and water flow rates and with the sample and reference flows adjusted, 
the solenoid valve S3 was opened to allow sudden and continuous in- 
jection ( a  step-up change) of the tracer gas into the inlet air stream. 
During the time of tracer-gas injection, the change in thermal con- 
ductivity of the effluent gas stream was recorded. The set of step-up 
response tracings recorded for carbon-dioxide injection is shown by 
Fig. 3. The response traces were staggered one above the other . to  
prepare this figure. The chart lines were photographically filtered out 
to leave only the black tracings on the heat-sensitive paper. The step- 
up responses for argon were much faster because of negligible absorp- 
tion. Further details of the experimental study and preliminary results 
are given by McSwain (6). 

The space time, TL,  for the liquid (water) phase was determined as 
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FREQUENCY RESPONSE OF BACK-FLOW CELL MODEL 35 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 ~  

FIG. 3. Experimental outlet-gaa responses to step input of carbon dioxide 
in the inlet gaa. Shown, starting from the top of the figure, are Runs 

l A ,  lB, 5A, 5B, 2, 6, 7, and 4B-COI. 

the ratio of measured holdup to measured flow rate for each run. The 
space time, lo, for the gas (air) phase was taken to be the ratio of 
gas-phase holdup to flow rate. The gas-phase holdup was determined 
as the difference between the total void volume and the liquid-phase 
holdup. The column space times are indicated for the different runs 
in Table 1. The gas (air) flow rates for the runs indicated by Table 1 

TABLE 1 

Column 
Run temp1 ZLt 
no. "F BeC 

Argon tracer rum 
2 86 
3 88 
4A 88 
4B 88 
5 88 
6A 88 
6B 88 
7 81 

0 

50 
136 
136 
131 
165 
165 
00 

Carbon dioxide abeorption runs 
1A 79 222 
1B 79 222 
2 83 119 
4B 84 50 
5A 86 151 
5B 86 151 
7 89 64 

6 . 4  0 
7 . 4  1170 
6 . 5  435 
6 . 5  435 
6 . 5  452 
6 . 6  362 
6 . 6  362 
7 . 3  0 

6 . 6  267 
6 . 6  267 
6 . 9  490 
7 . 5  1167 
6 . 3  399 
6 . 3  399 
6 . 9  946 

2 . 8  35.7 
3 . 4  17.3 
3 . 3  27.8 
3 . 2  41.0 
3 . 1  46.8 
3 . 0  41.0 
3 . 3  34.2 
3 . 4  26.4 

5 . 0  3 5 . 1  21.9 25.5 
5 . 0  35.1 21.9 25.5 
4 . 2  29.7 34.9 14.0 
3 . 2  18.5 86.4 6 . 2  
4 . 4  32.0 29.3 17.1 
4 . 4  32.0 29.3 17.1 
5 . 0  21.9 65.5 7 . 6  
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36 C. V. McSWAlN AND 1. D. DURBIN 

were constant a t  12.5 )( lb-moles/sec. Also, the mid-point column 
pressure was 15.8 & 0.1 psia. The column temperature indicated 
was measured midway in the packed section by means of a glass 
therniometer. 

NUMERICAL FOURIER TRANSFORMATION 

The experimental frequency-response characteristics relative to 
each step response run were obtained by numerical Fourier trans- 
formation of the pulse function, p ( t ) ,  obtained as 

(16) 
Here, v ( t )  is the normalized step response based on a total pen deflec- 
tion of 0 to 1.0 for each recording. Now, p ( t )  is Fourier transformable, 
whereas v ( t )  is not. The Fourier transform, in terms of its real and 
imaginary parts a t  a given frequency 0, may be calculated as 

p ( t )  = 1 - u(t )  

~ ( j w )  = r p ( t )  cos wt dt + j r p ( t )  sin wt dt (17) 

where t ,  is the record length. This is taken to be slightly larger than 
the time for the step response to reach the final steady state in a 
practical sense. Numerical values of P ( j 0 )  were obtained for each 
step-response curve for a range of assumed values of the frequency. 
The integration indicated by Eq. (17) was carried out using Filon’s 
(8) method of the Simpson’s rule type of integration. A time increment 
of 0.5 sec was used in digitizing the step-response curves. 

For each calculated value of P ( j w ) ,  the transfer-function character- 
istics can be obtained as 

G,( jw)  = 1 - j w  P ( j w )  ( 18) 

From the real and imaginary parts of this function, the amplitude 
ratio or unit gain factor ICY] and the phase angle LG, were calculated 
a t  each assumed frequency. These had to be corrected for the measure- 
ment time lag due to the thermal-conductivity cell. The step response 
for the thermal-conductivity cell by itself was measured by suddenly 
inserting the sample suction port into an atmosphere of carbon dioxide 
and air. The step response of the instrument by itself could be pre- 
dicted to a least-mean-square fit by two first order transfer functions 
in series with equal time constants of T, = 1.09 sec. These values 
were used to correct the calculated gains and phase angles for the 
measurement dynamics. 

The calculated values of IG,( and LG,., after correction for the 
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FREQUENCY RESPONSE OF BACK-FLOW CELL MODEL 37 

FREOUENCY, S l  - 
FIG. 4. Argon outlet-gas amplitude frequency responses without monitor- 
ing and transport lags. Points calculated from experimental argon step-up 
responses and solid lines from the backflow cell (8-82-11) model with 

beet betas. 

measurement and sampling time lags, are shown as the points in Figs. 
4 and 5 for the argon runs and in Figs. 6, 7, 9, and 10 for the carbon 
dioxide runs. The curves on these figures are those calculated for the 
backflow cell model. The frequency base is the reduced frequency, 

of 
gas in the column. In order to display all of the data points and fits in 
a compact form without crowding, they were staggered along the 
abscissa in Figs. 4, 5,9, and 10. The frequency base for each successive 
curve and group of points from left to right may be obtained by 
successively shifting the scale on the left 80 that  the lines a t  SZ = 5 or 
10 are aligned. The curves on Figs. 4 and 5 for argon are staggered 
vertically as well. However, the grid lines given allow one to count 
from unit amplitude ratio or zero phase-lag angle. 

The calculated frequency-response characteristics start to become 
erratic beginning a t  about 0 = 10 for argon and after 0 = 5 for 
carbon dioxide. The responses for argon are sharper and thus resolution 
to higher frequencies is obtained. The erratic behavior a t  high fre- 
quencies is due to a number of causes, including the lower frequency 
content of the step-response data and numerical difficulties associated 
with numerical Fourier-transformation techniques. The use of a step 

= wrOl defined as the actual frequency times the space time 
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FIG. 5. Argon outlet-gas phaee angle frequency responses without monk 
toring and transport lags. Points calculated from experimental argon 
step-up responses and solid lines from the backflow cell (8-82-11) model 

with best betas. 

type of input function became necessary because of the unavailability 
of the necessary equipment required to maintain sinusoidal varintions 
of the carbon-dioxide content of the feed gas. Any pulse type of input 
has greater high frequency content than the step function. However, 
unless the pulse duration is su5ciently long, not enough tracer.can be 
introduced to allow for absorption and obtain a good pulse response 
at the top. 

It should be stressed that frequency-response data obtained in the 
classical manner with a sinusoidal input a t  each frequency would begin 
to become erratic in the high-frequency region also, This is associated 
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FREQUENCY RESPONSE OF BACK-FLOW CELL MODEL 39 

with difficulties in accurately reading the amplitude ratio and phase 
shift a t  the higher frequencies, where the highly attenuated sinusoidal 
response is distorted by noise. The wave signals would have to be 
averaged as with a wave analyzer to obtain more reliable results. This 
would be similar to analyzing a number of step-response curves and 
averaging the results. For example, Argon Runs 6A and 6B and Carbon 
Dioxide Runs 5A and 5B, by themselves, give erratic results a t  the 
higher frequencies. If they are averaged, however, much smoother 
variations are obtained. 

For practical purposes having to do with simulation and process 
control the results obtained here are useful in that the predominant 
time-lag and delay characteristics are defined considerably past the 
critical frequency. Other time lags in any control loop would further 
damp the signal character and shift the significance of the column 
characteristics to even lower frequencies. 

The results given by Gray and Prados (2 )  indicate that  difficulties 
with the classical frequency-reponse technique are also experienced at 
high frequencies. In  their case, the frequency-response character of a 
mock-up section including only the end sections of the column was 
extracted M obtain the character of the packed section. Their data 
for a gas rate of 1 lb mole/hr-ft2 corresponds to a gas-phase residence 
time of about TQ = 0.5 min. Thus, their highest recorded frequency of 
4 cycles/min corresponds to a reduced frequency of about Q = 12.5 
rad. At this frequency and a t  zero water flow, the following amplitude 
ratios are indicated: 0.03 for the overall column; 0.06 for the mock-up 
section; and 0.5 is calculated for the packed section. Thus, the dy- 
namics of the measurement and mock-up sections are predominant. 
At the higher frequencies, the amplitude ratios are so low already that  
good definition of those for the packed section capnot be obtained. 
I n  our case, the frequency-response characteristics of the complete 
column are obtained. However, the void space in the end sections is 
a t  a minimum and the results are more characteristic of the packed 
section than those by Gray and Prados ( 2 ) .  Their calculated ampli- 
tude-ratio curves for the packed section flatten out at the higher fre- 
quencies. Our results do not indicate this flattening, and much lower 
amplitude ratios are observed. 

BACKFLOW CELL MODEL SIMULATION 

Brittain and Woodburn ( 9 )  obtained steady-state experimental gas- 
(air) phase carbon dioxide concentration profiles for a trickle bed. 
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40 C. V. McSWAlN AND 1. D. DURBIN 

They compared these with those predicted by a model considering the 
gas with axial mixing and the liquid (water) in plug flow. Here, the 
liquid-phase mixing in the bubble column is more severe. Also, the 
absorption of carbon dioxide into water is controlled by the liquid- 
phase resistance. Thus, the influence of mixing in the liquid phase will 
be important. From the standpoint of fitting the backflow cell model 
with a given number of cells, we have several parameters that are not 
easily specified; namely, the backflow ratios 8. and f ly and the number 
of transfer units No.. Alternatively to 8. and By, the phi numbers #I. 
and +y may be specified. For a large number of cells these may be 
noted as NPe,. and NPe,y, respectively, on the basis of the continuous- 
dispersion model. 

The backflow cell model of the column was considered in three 
sections with 11 cells for the region from the top of the packing to the 
water level, 82 cells for the packing, and 8 cells for the region from the 
bottom of the packing to the air-injection ring. This model is termed 
the (11-82-8) BCM (for backflow cell model). The positive z direction 
is considered to be the direction of flow of the water phase. Thus, the 
X phase is the water phase and the Y phase is the gas phase. Also, 
with respect to Fig. 1, the feed cells are a t  the respective ends of the 
column. The assignment of the X phase to the water phase means that 
No. is identical to NoL, the number of liquid-phase mass-transfer units. 
This is appropriate because of the controlling factor due to  the liquid 
phase for the carbon-dioxide absorption. 

The assignment of three regions to the model is necessary because 
of the different phase holdups in the regions per unit length. The void 
volumes of the three regions-namely, the top, packing, and bottom 
regionewere determined to be 0.104,0.788, and 0.074 ft3, respectively, 
with respective lengths of 6.4, 74.8, and 4.5 in. The void volumes of 
all cells in the column were made approximately equal, and this 
resulted in the (11-82-8) configuration. Those in the top and bottom 
sections were slightly off because of the requirement of an integer 
number of cells in each case. The number of cells is sufficiently high so 
that with #I = NPe for each phase a very good approximation to the 
continuous-dispersion model may be expected. This is indicated by the 
comparisons of the momenta of the impulse response of the two models 
for single-phase flow made by Roemer and Durbin (10). For example, 
with 100 cells the percent deviations are about 0.1 in the variancea 
and 1.0 in the central skew momenta for Npe = 40.0. Since the momenta 
are related to the curvature and form of the amplitude-ratio and 
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phase-angle curves, quite good correspondence is to be expected here 
for the number of cells chosen. 

The assignment of the holdups to the different regions was made 
by first assuming that the air-phase holdup or accumulation factor 
p y , k  in Eqs. (10) was given by py,k = ( P k V y , k ) / ( F T R T )  where 
F‘y,k and F,  are measured a t  the same conditions and P k  is the pressure 
a t  the mid-point of the cell. The pressurc variation was taken to be a 
linear function of the distance along the column such that the total 
pressure drop equaled the friction drop of 2 psig that was noted. The 
variation of the liquid- (water) phase holdup is mainly influenced by 
the presence of packing since the column was operated as a bubble 
column. The liquid-phasc holdup V x , k  for a cell in the packing was 
taken to be 0.644 times that of one not in the packing section. 

The “phi” number +i of the ith phase in any section or region R of 
the column with length G is defined relative to the packed section as 

This applies for uniform Yeclet number (or P’s )  along the axis of the 
section. It is assumed that the axial dispersion or eddy diffusion co- 
efficient Di for each phase is the same in all three sections. Then, the 
ratio of Peclet numbers (or 4’s) in any two sections is proportional to 
the ratios of the product of velocity times length. For the gas phase, 
a logical assumption is that  its velocity is uniform and thus /3 or N,, 
is uniform along the axis. However, the relative velocity of the liquid 
phase in the packed section is considered to be inversely proportional 
to the void fraction, which is 0.644 for the %-in. Intalox saddles. 
Under these assumptions, liquid-phase Peclet numbers or + values of 
0.055 and 0.039 times those of the packed section result, respectively, 
for the top and bottom sections. 

The axial-mixing characteristics of the water phase in this same 
column a t  the same gas-flow rate were investigated (6 ) .  Salt solution 
was pulse injected a t  the top of the column and the electrical conduc- 
tivity of the water phase was monitored at six points along the packed 
section. The responses were analyzed by transient response and 
moments techniques (10) to obtain the best fit of the single-phase 
hackflow cell model in the time domain. The variation of the liquid- 
phase eddy diffusivity with water-flow rate was found to be approxi- 
mately constant. This confirmed the validity of specifying the liquid- 
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42 C. V. McSWAlN AND 1. D. DURBIN 

phase mixing parameters for the different sections on the basis of the 
assumption of uniform eddy diffusivity along the axis. 

The single-phase (8-82-11) model was also used to fit the argon step- 
response curves by varying the mixing and time delay parameters ( 6 ) .  
The parameters for the best fits in the sense of least-mean-square 
deviation between experimental and model step responses are indicated 
in Table 1. The overall gas-phase Peclet number N p e , O  is based upon 
the packing section. The results indicate that this is relatively insensi- 
tive to the overall liquid-phase Reynolds number N R e , ~  or velocity 
except a t  the high flow rates, where a decrease is noted. The results 
are consistent with the assumption of uniform gas-phase eddy diffusiv- 
ity, since the changes in liquid-phase velocities in the column are not 
too severe. We consider the ratio of the velocity in an end section to 
that in the packing to be equal to t = 0.644. Thus, for this variation, 
the assumption of uniform gas-phase mixing is good. 

COMPARISON OF FREQUENCY-RESPONSE RESULTS 

In  order to test the validity and usefulness of the numerical Fourier 
transformation techniques, the results for argon as a tracer were com- 
pared to the theoretical predictions based upon the backflow cell 
model. First, the argon step-response curves were Fourier transformed 
and plotted as the points in Figs. 4 and 5, as noted earlier. Then, the 
outlet-gas amplitude ratio and phase angle relative to a sinusoidal 
variation in the inlet gas-phase concentration to the (8-82-1 1) back- 
flow cell model were computed according to the methods outlined 
above. The results are plotted as the solid lines in Figs. 4 and 5. These 
computations were made with the same values of Np. and deadtime 
tD as obtained for the best fits in the time domain. The value of No, 
was taken to be zero so that no interaction occurred between the 
phases. Alternatively, the single-phase model could be used. The com- 
plex matrix equation is specified by a tridiagonal system in this case. 

As shown by Figs. 4 and 5, the comparisons between the model and 
the experimentally derived frequency-response characteristics for the 
argon runs are very good for the frequency range less than SZ = 10. 
At this frequency, the amplitude ratio is about 0.1 and the phase angle 
is about -500". Thus, for practical control and simulation, the results 
are realistic and useful. The amplitude-ratio curves for Argon Runs 
Nos. 4A and 4B do not agree because of the different values of N P s , O  

as determined from the time-domain analysis. However, each agrees 
with the experimentally derived points. This indicates that  the fre- 
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quency-response techniques do indicate the degree of difference noted. 
Thus these frequency-response techniques would be useful in specify- 
ing system parameters. The degree of variation between Argon Runs 
Nos. 4A and 4B point out the difficulty of analyzing the faster-rising 
argon curves with the measurement lag present. The poorer fit for 
Argon Run No. 3 is due to the much higher water rate employed, It 
was observed that the water entrained very small air bubbles and 
carried them along for a short distance below the air input point. This 
would add another more macroscopic type of backflow, possibly over 
several cells in the model. Such an analysis was not made, and this run 
is included to show the effects of this type of phenomenon. The main 
characterization of the small-scale backmixing is satisfied by the value 
of NPe,O = 17.3 that was obtained. 

The estimated values of NPe,O from the argon runs and NPe,L from 
the salt-tracer runs were plotted versus the liquid-phase Reynolds 
number (6). Smooth curves through the respective sets of data yielded 
the estimates of NPe,o and NPe,L as indicated in Table 1 for the carbon 
dioxide runs. The fact that the argon frequency-response character- 
istics could be predicted by the model with parameters specified by 
the best fit in the time domain led us to believe that the procedure 
could be reversed to analyze the carbon dioxide runs. There are no 
analytical solutions available for calculating the step response of the 
two-phase models. Thus, timewise integration is called for with a re- 
sulting increase in computer time for the more complex system and 
longer time records. The computatiocal effort builds up rapidly with 
the number of cases with different parameters required to obtain the 
best fit of the response. Frequency-response calculations for the model 
need be made only a t  a selected number of frequencies to define the 
amplitude-ratio and phase-angle curves. This greatly reduces the 
computational effort. 

The frequency-response analysis of the carbon dioxide runs was 
initiated by first computing the characteristics for different values of 
No,  with the parameters relative to those for Carbon Dioxide Run No. 
2 in Table 1. The slope of the equilibrium line required to specify A 
was calculated from Henry’s-law coefficients as given by Perry (11) .  
The model results as shown by Figs. 6 and 7 indicate that  No, = 14 
gives the best fit of the experimental points for this run. Also, the 
agreement is qu;te realistic out to the frequency range 

With respect to the frequency-response plots, it should be noted 
that the experimental points have been corrected for the monitoring 
lag specified by two first-order time constants of 1.09 sec in series and 

= 5 to 10. 
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44 C. V. McSWAlN AND 1. D. DURBIN 

FIG. 6. Outlet-gas amplitude-ratio frequency response. Lines calculated 
from (11-82-8) BCM and points from Run 2-C02, excluding monitoring 

and transport lags. 

a transport lag. The transport delay or dead time tD was assumed to 
be the cumulative time for transport of the tracer gas from the point 
of injection to introduction into the column and then from the outlet 
gas above the water level through the sample tube to the thermistor 
sensing element of the conductivity cell. No consistently satisfactory 
method was available for independently estimating the dead time tD. 
Thus, this may be regarded as another parameter to be specified from 
the data. The dead time does not affect the amplitude-ratio curves so 
that the estimate of No, is best achieved with respect to these curves. 
However, the dead time adds to the phase-lag angle a component that 
increases linearly with frequency. 

t 
I I 1  1 1 1 1  

01 

FIG. 7. Outlet-gas phase-angle frequency response. Linea calculated from 
(11-82-8) BCM and points from Run 2COS excluding monitoring and 

transport lags. 
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For Carbon Dioxide Run No. 2 with No, = 14, the estimation of the 
dead time tD was made by averaging the additional delay times re- 
quired to make the theoretical phase-lag curve match the experimental 
phase-lag curve a t  frequencies of = 1,2, and 3. The phase-lag angle 
due to this dead time of 4.2 sec was subtracted from each experimental 
point. These corrected points are the ones plotted in Fig. 5. The fre- 
quency range that was selected occurs in the rapidly changing part  
of the phase-lag curve. As indicated by Fig. 5 ,  for the higher frequen- 
cies above 0 = 2, the theoretical phase-lag curves are fairly inde- 
pendent of No,. Even with the dead time known beforehand, it would 
be more difficult to estimate the best value of No,  using phase-lag 
curves such as displayed by Fig. 7. However, Fig. 7 indicates that  a 
value of No, = 14 is consistent with model variations and the data. 

The indication is that the phase lag of the model increases with 
frequency slightly more rapidly than the experimental data. It is 
believed that this is due to  the loss of resolution with the numerical 
Fourier transformation techniques. In general for process control with 
negative feedback, good definition of frequency-response character- 
istics is required out to the critical frequency for which the phase lag 
is 180". Thus, in this respect the model simulation of the absorption 
column with No,  = 14 for Carbon Dioxide Run No. 2 is quite 
satisfactory. 

The amplitude and phase-lag angle characteristics of the concentra- 
tion XI,,  of carbon dioxide in the outlet liquid (water) phase of the 
(1 1-82-8) backflow cell model relative to  sinusoidal variations in the 
inlet-gas-phase concentration were computed for the conditions of 
Run No. 2 with No, = 14. These characteristics are shown plotted 
versus frequency in Fig. 8. The reduced frequency basis R = W T ~ ,  as 
based upon the gas-phase space time, is retained so that  more direct 
comparisons with the gas-phase characteristic curves may be made. 
Interestingly enough, the amplitude-ratio curve decreases only slightly 
faster than that for the gas out. However, the phase-lag curve shows a 
much slower increase with frequency than the gas-out curve. This is 
due to the coupling by mixing and mass transfer between the gas and 
liquid cells right after the gas inlet point. The net effect is to decrease 
the phase-lag angle. 

The comparison of the data for the other carbon dioxide absorption 
runs was made under the assumption that the mass-transfer-rate fac- 
tor (ko,a) is constant for the bubble-column operation. Alternatively, 
this means that the product (F,N,,) is a constant. In  this way, 
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ai 0.5 10 s x ) K ,  
FREWENCY, D 

FIG. 8 ,  Outlet-liquid frequency response characteristics. Calculated from 
(11-82-8) BCM with No.= 14.0. 

No, for each run was estimated on the basis of the best value of No,  = 
14 for Carbon Dioxide Run No. 2. These values of No,  are given in 
Table 1. Other parameters relative to the conditions of each run as 
given in this table were obtained in the same manner as indicated 
above for Run No. 2. For each run, the amplitude-ratio and phase- 
angle characteristics of the outlet gas of the (11-82-8) backflow cell 
model were computed. These are compared with those derived from the 
experimental data in Figures 9 and 10. Again, the experimental phase- 
lag points are those corrected for dead time in the same manner as 
noted for Run No. 2. The estimated dead time for each run is given in 
Table 1. 

The frequency-response comparisons in Figs. 9 and 10 indicate that 
the assumption of constant (k,,a) with respect to  water flow rate is a 
fairly good approximation. Some increase in No,  for Carbon Dioxide 

05 I s w )  5 1 0  S Y )  s w )  
FREQUENCY, a 

FIG. 9. Outlet-gas amplitude-ratio frequency responses for various carbon 
dioxide NUS. Lines calculated from (11-82-8) BCM and points from ex- 

perimental data, excluding monitoring and transport lags. 
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FIG. 10. Outlet-gas phase-angle frequency responses without monitoring 
and transport lags for the absorption of carbon dioxide by water. Solid 
lines are calculated from the (11-82-8) BCM and points from experi- 

mental data. 

Runs Nos. 5 and 7 is indicated by the amplitude-ratio data. Before 
any correlation of No, is undertaken, further test data from pulse and 
sinusoidal responses should be analyzed. However, these results indi- 
cate that  the backflow cell model can be used to simulate the system 
for different conditions with an adjustment of parameters. 

CONCLUSION 

The backflow-cell-model equations have been developed for the two- 
phase flow process with imperfect axial mixing and mass transfer of a 
single solute. Methods of solution for the frequency-response charac- 
teristics of this model have been developed and the techniques outlined 
for digital computation. 

The frequency-response characteristics of the model have been com- 
pared to those obtained for the system of air and water in counter- 
current flow in a packed bubble column with step injection of argon 
and carbon dioxide tracer gases. The model frequency-response char- 
acteristics, as determined with parameters specified by the best fit of 
the argon step responses, agreed closely with the experimentally de- 
rived frequency-response data. This served to indicate that  the param- 
eters necessary to specify the system with carbon-dioxide absorption 
could be estimated by these frequency-response techniques. By varia- 
tion of the number of transfer units No,,  the model and experimental 
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amplitude-ratio curves can be brought into very good agreement for 
the range of frequencies of practical interest. The phase-lag-angle 
curves are not as reliable because of the influence of injection and 
sampling dead time. For variations in the liquid flow rate, the results 
of the study for this bubble column indicate that the backflow cell 
model is a useful dynamic model. Some adjustment in No,  would be 
required as a function of liquid flow rate. The methods of calculating 
frequency-response characteristics from the step response appear to be 
useful for practical process-control analysis. This is doubly so, since 
the step response is more readily obtained than  any other type of 
characteristic response without recourse to specialized and expensive 
equipment. 

l is t  of Symbols 

a 
ak 
A 
ii 

.! 
m 
LP 

n 
N 

in form a;,k; elements of quidiagonal coefficient 
mhtrix 
interfacial area per unit volume of system, ft2/ft* 
interfacial area per unit volume in the kth cell 
cross-sectional area of column 
quidiagonal Coefficient matrix from combined X and 
Y equations 
curvature of equilibrium line 
concentration of solute in the ith phase, lb moles/ft8 
inlet concentration of solute in the ith phase 
derivative operator, d/dt 
eddy diffusion coefficient for the ith phase, ft2/sec 
backflow rate of the ith phase from the kth cell, fta/sec 
flow rate of ith phase, ft*/sec 
overall mass-transfer coefficient baaed on X phase, 
ft/sec 
actual length of any section of column, ft 
actual length of packed section of column, ft 
slope of equilibrium relationship; cell with X-phase 
feed 
cell with Y-phase feed 
total number of cells in system including those in the 
end sections 
number of cells in a region R 
liquid-phase Reynolds number (average superficial ve- 
locity X nominal packing size)/kinematic viscosity 
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number of transfer unita, ko,aL,/F, 
dimensionless Peclet number for the i th phase in any 
section uid/Di 
coefficient element for net flow of the ith phase in a 
region, 1 if or 0 if not 
intercept of equilibrium expression 
mass transfer between X and Y phtum in kth cell, 

element of R for ith phase and kth cell material balance 
constant column vector from combined X and Y 
equations 
actual time, sec 
transport or dead time, sec 
linear velocity, ft/sec 
alternating X and Y profile column phasor vector 
total volume of system 
volume of X and Y phases in kth cell 
volume of ith phase in kth cell 
generalized solute concentration deviation in X phase 
generalized solute concentration variation in X-phase 
feed 
generalized solute concentration deviation in Y phase 
generalized solute concentration variation in Y-phase 
feed 
axial length dimension from X-phase input, f t  

Eq. (1) 

dimensionless rate constant for 11~888 transfer in kth 
cell, NosVk/V 
backflow ratio from kth cell in ith phase, f i , k / F i  

deviation in arbitrary variable y from constant steady 
S t a t e  
void fraction 
dimensionless capacity ratio, mF,/F, 
holdup rate constant for ith phase, Vi,k/Fi 
space time 
“phi” number for the ith phase, Eq. (19) 
dimensionless curvature of equilibrium relation 

actual frequency, rad/eec 
reduced frequency W T ~ ,  dimensionleas 

(&o>/ms 
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Subscripts 

G 
i 
I 
k 
L 
m 
n 
R 

Xl Y 
Superscripts 

- 
0 

C. V. McSWAlN AND 1. D. DURBIN 

gas phase 
phase, X or Y 
imaginary part of 
arbitrary cell 
liquid phase 
X-phase feed cell 
Y-phase feed cell 
real part of 
X or Y phase 

constant steady-state value 
feed condition 
equilibrium 
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